88 research outputs found

    Self-Organized Criticality in Developing Neuronal Networks

    Get PDF
    Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monitor the development between 13 and 95 days in vitro (DIV) of cortical cell cultures (n = 20) and find four different phases, related to their morphological maturation: An initial low-activity state (≈19 DIV) is followed by a supercritical (≈20 DIV) and then a subcritical one (≈36 DIV) until the network finally reaches stable criticality (≈58 DIV). Using network modeling and mathematical analysis we describe the dynamics of the emergent connectivity in such developing systems. Based on physiological observations, the synaptic development in the model is determined by the drive of the neurons to adjust their connectivity for reaching on average firing rate homeostasis. We predict a specific time course for the maturation of inhibition, with strong onset and delayed pruning, and that total synaptic connectivity should be strongly linked to the relative levels of excitation and inhibition. These results demonstrate that the interplay between activity and connectivity guides developing networks into criticality suggesting that this may be a generic and stable state of many networks in vivo and in vitro

    Astrocytic Ca2+ Waves Guide CNS Growth Cones to Remote Regions of Neuronal Activity

    Get PDF
    Activity plays a critical role in network formation during developmental, experience-dependent, and injury related remodeling. Here we report a mechanism by which axon trajectory can be altered in response to remote neuronal activity. Using photoconductive stimulation to trigger high frequency action potentials in rat hippocampal neurons in vitro, we find that activity functions as an attractive cue for growth cones in the local environment. The underlying guidance mechanism involves astrocyte Ca2+ waves, as the connexin-43 antagonist carbenoxolone abolishes the attraction when activity is initiated at a distance greater than 120 µm. The asymmetric growth cone filopodia extension that precedes turning can be blocked with CNQX (10 µM), but not with the ATP and adenosine receptor antagonists suramin (100 µM) and alloxazine (4 µM), suggesting non-NMDA glutamate receptors on the growth cone mediate the interaction with astrocytes. These results define a potential long-range signalling pathway for activity-dependent axon guidance in which growth cones turn towards directional, temporally coordinated astrocyte Ca2+ waves that are triggered by neuronal activity. To assess the viability of the guidance effect in an injury paradigm, we performed the assay in the presence of conditioned media from lipopolysaccharide (LPS) activated purified microglial cultures, as well as directly activating the glia present in our co-cultures. Growth cone attraction was not inhibited under these conditions, suggesting this mechanism could be used to guide regeneration following axonal injury

    Effects of Ionomycin on Egg Activation and Early Development in Starfish

    Get PDF
    Ionomycin is a Ca2+-selective ionophore that is widely used to increase intracellular Ca2+ levels in cell biology laboratories. It is also occasionally used to activate eggs in the clinics practicing in vitro fertilization. However, neither the precise molecular action of ionomycin nor its secondary effects on the eggs' structure and function is well known. In this communication we have studied the effects of ionomycin on starfish oocytes and zygotes. By use of confocal microscopy, calcium imaging, as well as light and transmission electron microscopy, we have demonstrated that immature oocytes exposed to ionomycin instantly increase intracellular Ca2+ levels and undergo structural changes in the cortex. Surprisingly, when microinjected into the cells, ionomycin produced no Ca2+ increase. The ionomycin-induced Ca2+ rise was followed by fast alteration of the actin cytoskeleton displaying conspicuous depolymerization at the oocyte surface and in microvilli with concomitant polymerization in the cytoplasm. In addition, cortical granules were disrupted or fused with white vesicles few minutes after the addition of ionomycin. These structural changes prevented cortical maturation of the eggs despite the normal progression of nuclear envelope breakdown. At fertilization, the ionomycin-pretreated eggs displayed reduced Ca2+ response, no elevation of the fertilization envelope, and the lack of orderly centripetal translocation of actin fibers. These alterations led to difficulties in cell cleavage in the monospermic zygotes and eventually to a higher rate of abnormal development. In conclusion, ionomycin has various deleterious impacts on egg activation and the subsequent embryonic development in starfish. Although direct comparison is difficult to make between our findings and the use of the ionophore in the in vitro fertilization clinics, our results call for more defining investigations on the issue of a potential risk in artificial egg activation

    Neocortical Axon Arbors Trade-off Material and Conduction Delay Conservation

    Get PDF
    The brain contains a complex network of axons rapidly communicating information between billions of synaptically connected neurons. The morphology of individual axons, therefore, defines the course of information flow within the brain. More than a century ago, Ramón y Cajal proposed that conservation laws to save material (wire) length and limit conduction delay regulate the design of individual axon arbors in cerebral cortex. Yet the spatial and temporal communication costs of single neocortical axons remain undefined. Here, using reconstructions of in vivo labelled excitatory spiny cell and inhibitory basket cell intracortical axons combined with a variety of graph optimization algorithms, we empirically investigated Cajal's conservation laws in cerebral cortex for whole three-dimensional (3D) axon arbors, to our knowledge the first study of its kind. We found intracortical axons were significantly longer than optimal. The temporal cost of cortical axons was also suboptimal though far superior to wire-minimized arbors. We discovered that cortical axon branching appears to promote a low temporal dispersion of axonal latencies and a tight relationship between cortical distance and axonal latency. In addition, inhibitory basket cell axonal latencies may occur within a much narrower temporal window than excitatory spiny cell axons, which may help boost signal detection. Thus, to optimize neuronal network communication we find that a modest excess of axonal wire is traded-off to enhance arbor temporal economy and precision. Our results offer insight into the principles of brain organization and communication in and development of grey matter, where temporal precision is a crucial prerequisite for coincidence detection, synchronization and rapid network oscillations

    Two euAGAMOUS genes control C-function in Medicago truncatula

    Get PDF
    [EN] C-function MADS-box transcription factors belong to the AGAMOUS (AG) lineage and specify both stamen and carpel identity and floral meristem determinacy. In core eudicots, the AG lineage is further divided into two branches, the euAG and PLE lineages. Functional analyses across flowering plants strongly support the idea that duplicated AG lineage genes have different degrees of subfunctionalization of the C-function. The legume Medicago truncatula contains three C-lineage genes in its genome: two euAG genes (MtAGa and MtAGb) and one PLENA-like gene (MtSHP). This species is therefore a good experimental system to study the effects of gene duplication within the AG subfamily. We have studied the respective functions of each euAG genes in M. truncatula employing expression analyses and reverse genetic approaches. Our results show that the M. truncatula euAG- and PLENA-like genes are an example of subfunctionalization as a result of a change in expression pattern. MtAGa and MtAGb are the only genes showing a full C-function activity, concomitant with their ancestral expression profile, early in the floral meristem, and in the third and fourth floral whorls during floral development. In contrast, MtSHP expression appears late during floral development suggesting it does not contribute significantly to the C-function. Furthermore, the redundant MtAGa and MtAGb paralogs have been retained which provides the overall dosage required to specify the C-function in M. truncatula.This work was funded by grants BIO2009-08134 and BIO2012-39849-C02-01 from the Spanish Ministry of Economy and Competitiveness and the Ramon y Cajal Program (RYC-2007-00627 to CGM). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Serwatowska, J.; Roque Mesa, EM.; Gómez Mena, MC.; Constantin, GD.; Wen, J.; Mysore, KS.; Lund, OS.... (2014). Two euAGAMOUS genes control C-function in Medicago truncatula. PLoS ONE. 9(8):103770-1-103770-12. https://doi.org/10.1371/journal.pone.0103770S103770-1103770-1298Prunet, N., & Jack, T. P. (2013). Flower Development in Arabidopsis: There Is More to It Than Learning Your ABCs. Flower Development, 3-33. doi:10.1007/978-1-4614-9408-9_1Causier, B., Schwarz-Sommer, Z., & Davies, B. (2010). Floral organ identity: 20 years of ABCs. Seminars in Cell & Developmental Biology, 21(1), 73-79. doi:10.1016/j.semcdb.2009.10.005Irish, V. F. (2010). The flowering of Arabidopsis flower development. The Plant Journal, 61(6), 1014-1028. doi:10.1111/j.1365-313x.2009.04065.xHeijmans, K., Morel, P., & Vandenbussche, M. (2012). MADS-box Genes and Floral Development: the Dark Side. Journal of Experimental Botany, 63(15), 5397-5404. doi:10.1093/jxb/ers233Bowman, J. L., Smyth, D. R., & Meyerowitz, E. M. (1989). Genes directing flower development in Arabidopsis. The Plant Cell, 1(1), 37-52. doi:10.1105/tpc.1.1.37Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., & Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature, 346(6279), 35-39. doi:10.1038/346035a0Bradley, D., Carpenter, R., Sommer, H., Hartley, N., & Coen, E. (1993). Complementary floral homeotic phenotypes result from opposite orientations of a transposon at the plena locus of antirrhinum. Cell, 72(1), 85-95. doi:10.1016/0092-8674(93)90052-rPinyopich, A., Ditta, G. S., Savidge, B., Liljegren, S. J., Baumann, E., Wisman, E., & Yanofsky, M. F. (2003). Assessing the redundancy of MADS-box genes during carpel and ovule development. Nature, 424(6944), 85-88. doi:10.1038/nature01741Liljegren, S. J., Ditta, G. S., Eshed, Y., Savidge, B., Bowman, J. L., & Yanofsky, M. F. (2000). SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature, 404(6779), 766-770. doi:10.1038/35008089Davies, B., Motte, P., Keck, E., Saedler, H., Sommer, H., & Schwarz-Sommer, Z. (1999). PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development. The EMBO Journal, 18(14), 4023-4034. doi:10.1093/emboj/18.14.4023Kramer, E. M., Jaramillo, M. A., & Di Stilio, V. S. (2004). Patterns of Gene Duplication and Functional Evolution During the Diversification of the AGAMOUS Subfamily of MADS Box Genes in Angiosperms. Genetics, 166(2), 1011-1023. doi:10.1534/genetics.166.2.1011Becker, A. (2003). The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Molecular Phylogenetics and Evolution, 29(3), 464-489. doi:10.1016/s1055-7903(03)00207-0Irish, V. F. (2003). The evolution of floral homeotic gene function. BioEssays, 25(7), 637-646. doi:10.1002/bies.10292Zahn, L. M., Leebens-Mack, J. H., Arrington, J. M., Hu, Y., Landherr, L. L., dePamphilis, C. W., … Ma, H. (2006). Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events. Evolution Development, 8(1), 30-45. doi:10.1111/j.1525-142x.2006.05073.xFerrandiz, C. (2000). Negative Regulation of the SHATTERPROOF Genes by FRUITFULL During Arabidopsis Fruit Development. Science, 289(5478), 436-438. doi:10.1126/science.289.5478.436Ma, H., Yanofsky, M. F., & Meyerowitz, E. M. (1991). AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes & Development, 5(3), 484-495. doi:10.1101/gad.5.3.484Savidge, B., Rounsley, S. D., & Yanofsky, M. F. (1995). Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. The Plant Cell, 7(6), 721-733. doi:10.1105/tpc.7.6.721Colombo, M., Brambilla, V., Marcheselli, R., Caporali, E., Kater, M. M., & Colombo, L. (2010). A new role for the SHATTERPROOF genes during Arabidopsis gynoecium development. Developmental Biology, 337(2), 294-302. doi:10.1016/j.ydbio.2009.10.043Fourquin, C., & Ferrándiz, C. (2012). Functional analyses of AGAMOUS family members in Nicotiana benthamiana clarify the evolution of early and late roles of C-function genes in eudicots. The Plant Journal, 71(6), 990-1001. doi:10.1111/j.1365-313x.2012.05046.xKapoor, M., Tsuda, S., Tanaka, Y., Mayama, T., Okuyama, Y., Tsuchimoto, S., & Takatsuji, H. (2002). Role of petuniapMADS3in determination of floral organ and meristem identity, as revealed by its loss of function. The Plant Journal, 32(1), 115-127. doi:10.1046/j.1365-313x.2002.01402.xPan, I. L., McQuinn, R., Giovannoni, J. J., & Irish, V. F. (2010). Functional diversification of AGAMOUS lineage genes in regulating tomato flower and fruit development. Journal of Experimental Botany, 61(6), 1795-1806. doi:10.1093/jxb/erq046Pnueli, L., Hareven, D., Rounsley, S. D., Yanofsky, M. F., & Lifschitz, E. (1994). Isolation of the tomato AGAMOUS gene TAG1 and analysis of its homeotic role in transgenic plants. The Plant Cell, 6(2), 163-173. doi:10.1105/tpc.6.2.163Dreni, L., & Kater, M. M. (2013). MADSreloaded: evolution of theAGAMOUSsubfamily genes. New Phytologist, 201(3), 717-732. doi:10.1111/nph.12555Brunner, A. M. (2000). Plant Molecular Biology, 44(5), 619-634. doi:10.1023/a:1026550205851Perl-Treves, R., Kahana, A., Rosenman, N., Xiang, Y., & Silberstein, L. (1998). Expression of Multiple AGAMOUS-Like Genes in Male and Female Flowers of Cucumber (Cucumis sativus L.). Plant and Cell Physiology, 39(7), 701-710. doi:10.1093/oxfordjournals.pcp.a029424Yu, D., Kotilainen, M., Pöllänen, E., Mehto, M., Elomaa, P., Helariutta, Y., … Teeri, T. H. (1999). Organ identity genes and modified patterns of flower development in Gerbera hybrida (Asteraceae). The Plant Journal, 17(1), 51-62. doi:10.1046/j.1365-313x.1999.00351.xDong, Z., Zhao, Z., Liu, C., Luo, J., Yang, J., Huang, W., … Luo, D. (2005). Floral Patterning in Lotus japonicus. Plant Physiology, 137(4), 1272-1282. doi:10.1104/pp.104.054288Hofer, J. M., & Noel Ellis, T. (2014). Developmental specialisations in the legume family. Current Opinion in Plant Biology, 17, 153-158. doi:10.1016/j.pbi.2013.11.014Fourquin, C., del Cerro, C., Victoria, F. C., Vialette-Guiraud, A., de Oliveira, A. C., & Ferrándiz, C. (2013). A Change in SHATTERPROOF Protein Lies at the Origin of a Fruit Morphological Novelty and a New Strategy for Seed Dispersal in Medicago Genus. Plant Physiology, 162(2), 907-917. doi:10.1104/pp.113.217570Hewitt EJ (1966) Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal, UK: Commonwealth Agricultural Bureau.Cheng, X., Wang, M., Lee, H.-K., Tadege, M., Ratet, P., Udvardi, M., … Wen, J. (2013). An efficient reverse genetics platform in the model legumeMedicago truncatula. New Phytologist, 201(3), 1065-1076. doi:10.1111/nph.12575D’ Erfurth, I., Cosson, V., Eschstruth, A., Lucas, H., Kondorosi, A., & Ratet, P. (2003). Efficient transposition of theTnt1tobacco retrotransposon in the model legumeMedicago truncatula. The Plant Journal, 34(1), 95-106. doi:10.1046/j.1365-313x.2003.01701.xTadege, M., Ratet, P., & Mysore, K. S. (2005). Insertional mutagenesis: a Swiss Army knife for functional genomics of Medicago truncatula. Trends in Plant Science, 10(5), 229-235. doi:10.1016/j.tplants.2005.03.009Tadege, M., Wen, J., He, J., Tu, H., Kwak, Y., Eschstruth, A., … Mysore, K. S. (2008). Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. The Plant Journal, 54(2), 335-347. doi:10.1111/j.1365-313x.2008.03418.xCheng, X., Wen, J., Tadege, M., Ratet, P., & Mysore, K. S. (2010). Reverse Genetics in Medicago truncatula Using Tnt1 Insertion Mutants. Plant Reverse Genetics, 179-190. doi:10.1007/978-1-60761-682-5_13Benlloch, R., d’ Erfurth, I., Ferrandiz, C., Cosson, V., Beltrán, J. P., Cañas, L. A., … Ratet, P. (2006). Isolation of mtpim Proves Tnt1 a Useful Reverse Genetics Tool in Medicago truncatula and Uncovers New Aspects of AP1-Like Functions in Legumes. Plant Physiology, 142(3), 972-983. doi:10.1104/pp.106.083543Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., … Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947-2948. doi:10.1093/bioinformatics/btm404Altschul, S. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25(17), 3389-3402. doi:10.1093/nar/25.17.3389Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4.0. Molecular Biology and Evolution, 24(8), 1596-1599. doi:10.1093/molbev/msm092Dellaporta, S. L., Wood, J., & Hicks, J. B. (1983). A plant DNA minipreparation: Version II. Plant Molecular Biology Reporter, 1(4), 19-21. doi:10.1007/bf02712670Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data by the comparative CT method. Nature Protocols, 3(6), 1101-1108. doi:10.1038/nprot.2008.73Constantin, G. D., Krath, B. N., MacFarlane, S. A., Nicolaisen, M., Elisabeth Johansen, I., & Lund, O. S. (2004). Virus-induced gene silencing as a tool for functional genomics in a legume species. The Plant Journal, 40(4), 622-631. doi:10.1111/j.1365-313x.2004.02233.xWesley, S. V., Helliwell, C. A., Smith, N. A., Wang, M., Rouse, D. T., Liu, Q., … Waterhouse, P. M. (2001). Construct design for efficient, effective and high-throughput gene silencing in plants. The Plant Journal, 27(6), 581-590. doi:10.1046/j.1365-313x.2001.01105.xGuerineau F, Mullineaux P (1993) Plant transformation and expression vectors. In: Croy R, editor. Plant Molecular Biology. Oxford, UK: Bios Scientific Publishers, Academic Press. pp. 121–147.Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method forAgrobacterium-mediated transformation ofArabidopsis thaliana. The Plant Journal, 16(6), 735-743. doi:10.1046/j.1365-313x.1998.00343.xBenlloch, R., Roque, E., Ferrándiz, C., Cosson, V., Caballero, T., Penmetsa, R. V., … Madueño, F. (2009). Analysis of B function in legumes: PISTILLATA proteins do not require the PI motif for floral organ development inMedicago truncatula. The Plant Journal, 60(1), 102-111. doi:10.1111/j.1365-313x.2009.03939.xRoque, E., Serwatowska, J., Cruz Rochina, M., Wen, J., Mysore, K. S., Yenush, L., … Cañas, L. A. (2012). Functional specialization of duplicated AP3-like genes inMedicago truncatula. The Plant Journal, 73(4), 663-675. doi:10.1111/tpj.12068Flanagan, C. A., Hu, Y., & Ma, H. (1996). Specific expression of the AGL1 MADS-box gene suggests regulatory functions in Arabidopsis gynoecium and ovule development. The Plant Journal, 10(2), 343-353. doi:10.1046/j.1365-313x.1996.10020343.xSieburth, L. E., & Meyerowitz, E. M. (1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located intragenically. The Plant Cell, 9(3), 355-365. doi:10.1105/tpc.9.3.355Busch, M. A. (1999). Activation of a Floral Homeotic Gene in Arabidopsis. Science, 285(5427), 585-587. doi:10.1126/science.285.5427.585Moyroud, E., Minguet, E. G., Ott, F., Yant, L., Posé, D., Monniaux, M., … Parcy, F. (2011). Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for the Arabidopsis LEAFY Transcription Factor. The Plant Cell, 23(4), 1293-1306. doi:10.1105/tpc.111.083329Grønlund, M., Constantin, G., Piednoir, E., Kovacev, J., Johansen, I. E., & Lund, O. S. (2008). Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Research, 135(2), 345-349. doi:10.1016/j.virusres.2008.04.005Mandel, M. A., Bowman, J. L., Kempin, S. A., Ma, H., Meyerowitz, E. M., & Yanofsky, M. F. (1992). Manipulation of flower structure in transgenic tobacco. Cell, 71(1), 133-143. doi:10.1016/0092-8674(92)90272-eMizukami, Y., & Ma, H. (1992). Ectopic expression of the floral homeotic gene AGAMOUS in transgenic Arabidopsis plants alters floral organ identity. Cell, 71(1), 119-131. doi:10.1016/0092-8674(92)90271-dCannon, S. B., Sterck, L., Rombauts, S., Sato, S., Cheung, F., Gouzy, J., … Young, N. D. (2006). Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proceedings of the National Academy of Sciences, 103(40), 14959-14964. doi:10.1073/pnas.0603228103Young, N. D., & Bharti, A. K. (2012). Genome-Enabled Insights into Legume Biology. Annual Review of Plant Biology, 63(1), 283-305. doi:10.1146/annurev-arplant-042110-103754Jager, M. (2003). MADS-Box Genes in Ginkgo biloba and the Evolution of the AGAMOUS Family. Molecular Biology and Evolution, 20(5), 842-854. doi:10.1093/molbev/msg089Johansen, B., Pedersen, L. B., Skipper, M., & Frederiksen, S. (2002). MADS-box gene evolution—structure and transcription patterns. Molecular Phylogenetics and Evolution, 23(3), 458-480. doi:10.1016/s1055-7903(02)00032-5Rutledge, R., Regan, S., Nicolas, O., Fobert, P., Côté, C., Bosnich, W., … Stewart, D. (1998). Characterization of an AGAMOUS homologue from the conifer black spruce ( Picea mariana ) that produces floral homeotic conversions when expressed in Arabidopsis. The Plant Journal, 15(5), 625-634. doi:10.1046/j.1365-313x.1998.00250.xParcy, F., Nilsson, O., Busch, M. A., Lee, I., & Weigel, D. (1998). A genetic framework for floral patterning. Nature, 395(6702), 561-566. doi:10.1038/26903Causier, B., Bradley, D., Cook, H., & Davies, B. (2009). Conserved intragenic elements were critical for the evolution of the floral C-function. The Plant Journal, 58(1), 41-52. doi:10.1111/j.1365-313x.2008.03759.xAiroldi, C. A., & Davies, B. (2012). Gene Duplication and the Evolution of Plant MADS-box Transcription Factors. Journal of Genetics and Genomics, 39(4), 157-165. doi:10.1016/j.jgg.2012.02.008Giménez, E., Pineda, B., Capel, J., Antón, M. T., Atarés, A., Pérez-Martín, F., … Lozano, R. (2010). Functional Analysis of the Arlequin Mutant Corroborates the Essential Role of the ARLEQUIN/TAGL1 Gene during Reproductive Development of Tomato. PLoS ONE, 5(12), e14427. doi:10.1371/journal.pone.0014427Kater, M. M., Colombo, L., Franken, J., Busscher, M., Masiero, S., Van Lookeren Campagne, M. M., & Angenent, G. C. (1998). Multiple AGAMOUS Homologs from Cucumber and Petunia Differ in Their Ability to Induce Reproductive Organ Fate. The Plant Cell, 10(2), 171-182. doi:10.1105/tpc.10.2.171Tsuchimoto, S., van der Krol, A. R., & Chua, N. H. (1993). Ectopic expression of pMADS3 in transgenic petunia phenocopies the petunia blind mutant. The Plant Cell, 5(8), 843-853. doi:10.1105/tpc.5.8.843Airoldi, C. A., Bergonzi, S., & Davies, B. (2010). Single amino acid change alters the ability to specify male or female organ identity. Proceedings of the National Academy of Sciences, 107(44), 18898-18902. doi:10.1073/pnas.1009050107Causier, B., Castillo, R., Zhou, J., Ingram, R., Xue, Y., Schwarz-Sommer, Z., & Davies, B. (2005). Evolution in Action: Following Function in Duplicated Floral Homeotic Genes. Current Biology, 15(16), 1508-1512. doi:10.1016/j.cub.2005.07.063Birchler, J. A., & Veitia, R. A. (2007). The Gene Balance Hypothesis: From Classical Genetics to Modern Genomics. The Plant Cell, 19(2), 395-402. doi:10.1105/tpc.106.049338Birchler, J. A., & Veitia, R. A. (2009). The gene balance hypothesis: implications for gene regulation, quantitative traits and evolution. New Phytologist, 186(1), 54-62. doi:10.1111/j.1469-8137.2009.03087.xEdger, P. P., & Pires, J. C. (2009). Gene and genome duplications: the impact of dosage-sensitivity on the fate of nuclear genes. Chromosome Research, 17(5), 699-717. doi:10.1007/s10577-009-9055-9Freeling, M. (2006). Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity. Genome Research, 16(7), 805-814. doi:10.1101/gr.368140
    • …
    corecore